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The complex Bragg-grating waveguide (CBGW) is a semiconductor strip channel with many side corrugations or
teeth. The layer-peeling (LP) and layer-adding (LA) algorithms have shown that the CBGW can be designed to
offer an arbitrary pre-selected spectral-transmission profile having multiple peaks, but such a structure generally
requires a huge number of teeth and a long length scale. In this paper, we propose a modified LP/LA algorithm
that can significantly reduce CBGW structure length and develop accompanying time/memory-saving simulation
procedures. Dispersion engineering is also introduced to significantly improve the accuracy of the LP/LA algo-
rithm for high-index-contrast structures. A CBGW for a transmission spectrum with three passbands is designed
and optimized on the silicon-on-insulator platform. Results show that our design can shorten the length of the
CBGW by 10 times compared to the original design by the LP algorithm. Compared to the original LP/LA
algorithm, the modified algorithm with dispersion engineering significantly improves the matching between
the reconstructed transmission and the actual spectrum obtained by simulation. © 2018 Optical Society of America

OCIS codes: (130.5296) Photonic crystal waveguides; (130.4815) Optical switching devices; (230.7408) Wavelength filtering

devices; (130.0250) Optoelectronics.
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1. INTRODUCTION

The complex Bragg-grating waveguide (CBGW) consists of a
sequence of side corrugations or lateral “teeth” on a strip chan-
nel waveguide [1], as illustrated in Fig. 1. The semiconductor
teeth (made of the same material as the channel) usually have
the same shape on both sides of the strip, but the length, width,
and sequence of individual teeth can be arbitrary. As a result,
this waveguide “filter” with suitably designed teeth can have a
complicated multi-peak transmission profile as a function of
wavelength. The field of arbitrary CBGWs has great untapped
potential in terms of rich possibilities of structure designs and
broad application opportunities. CBGWs could be fabricated
from semiconductor material in any of the three principal in-
tegrated-photonic network platforms based upon Si or InP or
SiN. Monolithic foundry manufacture should be feasible, and
the resulting structures would have medium- or high-index
contrast. Currently, relatively few papers have studied CBGW
in the high-index-contrast silicon photonics platform [2,3].
Knowing the fabrication, the customized complex waveguides

could then be applied to several important photonic functions,
such as the creation of 1) matched filters for trace-gas sensing of
CH4, CO, NH3, etc. [4], 2) resonant thermo-optic and
electro-optic 2 × 2 switches [5,6], 3) sideband filters for micro-
wave photonics, and 4) on-chip instrumentation systems,
such as refractometers, spectrometers, and Fourier-transform
analyzers [7].

CBGWs constitute a new aspect of photonic integrated
circuits, and CBGWs offer unique characteristics compared
to other 1D photonic crystal waveguides such as narrow-band
Bragg-grating waveguides (NBGWs) [8] and nanobeams [9].
Although light can be guided, confined, and controlled by
those other structures, they are unable to achieve an arbitrary
transmission spectrum. The CBGW is not a periodic structure;
it can be seen as a NBGWwith teeth widths that vary along the
direction of light propagation, as per Fig. 1. Those widths are
calculated with certain algorithms when the target transmission
is given. If we treat the change of index variations of these
NBGWs as discrete, there are algorithms such as layer peeling
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(LP) [10–13]. There are several other algorithms if we treat
those variations as pseudo-continuous [14–18]. The pioneering
work of Zhu et al. [1,19] on the LP algorithm has created a
highly capable computer-based electromagnetic design tool that
can be used to produce a chosen multiple-peak transmission
spectrum. The complicated spectral pattern of transmission
that is specified at the outset of the work (the filter) is then
actualized using a dedicated tooth array. CBGW has been
shown to be of great use in astrophysics. Hawthorn showed that
hydroxyl (OH) emission from the atmosphere can be filtered
out using a complex Bragg grating in a fiber platform [20].

However, there are presently obstacles to CBGW develop-
ment. For example, a 2 cm long CBGW filter could need days
or weeks to calculate a single transmission wavelength [19].
The long length of CBGW devices found in early simulations
seems to make them less competitive than other photonic
crystal devices. This begs the question of how to reduce the
device length and complexity to reach the same transmission
spectrum. Because of the CBGW’s length scale and compli-
cated structure, optimization methods such as setting Bloch
boundary conditions fail to work [21].

In this work, we introduce a novel approach that can
significantly reduce the filter length without affecting its per-
formance compared to those obtained by conventional LP/
layer-adding (LP/LA) algorithms. In our approach, after the in-
itial design by the conventional LP algorithm, a large number
of non-essential grating segments in the spatial domain are first
uncovered and removed, by virtue of physics insight from
phase-related analysis. Then the remaining essential segments
are used to reconstruct the spectrum using the LA algorithm. As
such, the length of the CBGW is reduced significantly, which is
advantageous for practical applications.

In this work, we are interested in developing CBGW on the
silicon photonics platform. This leads to another important
aspect of this work: developing a CBGW design method that
can accommodate large index contrast and stronger dispersion
in silicon waveguides. While in some lower-index-contrast sys-
tems or single narrow-band cases [2] the dispersion may be ne-
glected, this is generally not the case in silicon-based CBGWs,
as we shall see. Dispersion engineering of the complex reflec-
tion coefficients is introduced to account for the actual reflec-
tion characteristics in silicon-on-insulator (SOI)-based CBGW.
Comparison between results using original LP/LA algorithms

and our modified LP/LA algorithm shows the effectiveness
of our approach. In addition, exploiting the periodicity within
each NBGW, a transfer matrix/S-matrix-based approach is de-
veloped that substantially reduces simulation times in the
reconstruction process. Our approach significantly speeds up
the design/simulation compared to classic simulation ap-
proaches. To show the advantage of our approach and reveal
the potential of CBGW devices, a filter with multiple pass-
bands is designed. With our approach, the length scale is re-
duced 10 times compared to conventional designing
methodology.

2. THEORETICAL APPROACH

A. Theoretical Background

In this subsection, we briefly review the common LP/LA algo-
rithms used in CBGW design. The LP algorithm is a kind of
inverse scattering approach. The target transmission/reflection
spectrum is given first. Then the whole structure is divided into
small segments with different physical parameters. Due to
causality, the parameters of the first segment can be obtained
according to the target reflection spectrum of the structure.
Furthermore, the reflection coefficient of the second segment
will be found using the extracted parameters of the first
segment and the target reflection spectrum. The procedure
is then repeated until the parameters of the last segment are
found [11–13].

To design CBGW by the LP algorithm, we start with mod-
eling of a normal Bragg grating waveguide since a CBGW can
essentially be treated as the combination of NBGW segments,
and such combined segments are indicated schematically in
Fig. 1—albeit, there with a more complex teeth pattern than
actually employed in the narrowband case. The modeling here
is based on coupled mode theory [22]. It is well known that a
NBGW has a periodic variation of the refractive index [23].
This perturbation can be expressed as

n�z� � n0 � Δn1 cos

�
2π

Λ
z � θ1�z�

�

� Δn2 cos

�
4π

Λ
z � θ2�z�

�
…, (1)

where n0 is the average effective refractive index, Δn1 is the
first-order perturbation to the effective refractive index, θi is
an optical phase factor, and Λ � λcenter∕n0 is the period of
the Bragg waveguide. With coupled mode theory, the transfer
matrix of a NBGW can be obtained [24–26].

Then serval approximations are made. First, the operation
wavelength range of target transmission shape design in the
CBGW is approximated as a constant. The operation band-
width of a CBGW is the same as the bandwidth of each
NBGW segment, which is the bandwidth between the first
nulls around the main reflection peak in a NBGW. It can be

determined by Δλ � λ2center
πng

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 � � π

ΔL�2
q

, where ΔL is the

length of each NBGW segment, q is the coupling coefficient
[27], and ng is the group index. For a NBGW with short
periods (small ΔL) or small coupling coefficient, the operation
wavelength range is

Fig. 1. Schematic drawing of complex Bragg-grating waveguide
(top view) constructed in a single-mode strip waveguide (of uniform
thickness) and designed to offer an optical filter transmission profile
that matches an arbitrary pre-selected spectral profile. This illustrative
example contains three normal Bragg grating waveguide (NBGW) seg-
ments. Each segment is illustrated by a black box that surrounds it.
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Δλ ≈
λ2center
ngΔL

: (2)

Second, it is assumed that the reflectivity of operation wave-
lengths is the same as that of the central wavelength. In this
region, we define the reflectivity of the central wavelength as
a new term, ρ � − tanh�jqjΔL� q�

jqj. It is called the complex
reflection coefficient [12].

Given these approximations, the transfer matrix T of the
NBGW can be simplified and rewritten [11,12]. When differ-
ent Bragg gratings of different index variations are put in series,
the change of reflection field between two adjacent NBGWs
has a certain relation. The relation can be expressed as a formula
with two expressions. We call them LP/LA algorithms. The two
equations are shown below. The whole grating has a total length
L and is divided into N individual segments, ρ�z� is the com-
plex reflection coefficient of the nth segment, and z � nΔL.
r�z, δ� is the reflectivity at position (z) when the wavenumber
detuning is δ:

r�z � ΔL, δ� � exp�−i2δΔL� r�z, δ� − ρ�z�
1 − ρ��z�r�z, δ� , (3)

r�z, δ� � r�z � ΔL, δ� � ρ�z� exp�−i2δΔL�
exp�−i2δΔL� � ρ��z�r�z � ΔL, δ� : (4)

Equation (3) is the equation of LP, while Eq. (4) is the equa-
tion of LA [1,12,13]. Their usages will be explained later.

Before the designing procedures, the phases of each wave-
length in the target reflection should be given, and they should
be physically realizable. In spectrum design, only the target
transmission power jTj is known, while the phase of the field
is not given. If we perform an inverse Fourier transform on
target reflection r�z � 0, δ� in the frequency domain, we
get the impulse response of reflection in the time domain
r�z � 0, t�. Physically, the reflection occurs only after an input
light enters the device when t � 0. Therefore, the impulse re-
sponse of reflection should be zero when t < 0 in the time do-
main. To realize this, a window function is usually operated on
the reflection to force the field reflection r to be zero when
t < 0 [1,12,13]. The phase of reflection is given too because
of the window function.

The conventional designing process is the following: First,
r�z � 0, δ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�z � 0, δ�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T �δ�

p
is given; then the

complex reflection coefficient of the first segment ρ�z � 0� is
obtained using

ρ�z� � 1

M

Xδω∕2
−δω∕2

r�z, δ�, (5)

whereM is the number of wavelengths used in target transmis-
sion, and δω is the designed spectrum width of CBGW in
wavenumber space. Equation (7) can be deduced by discrete
Fourier transform [12]. Then the reflectivity of the second seg-
ment r�z � ΔL, δ� is calculated by Eq. (2), while the complex
reflectivity coefficient ρ�z � ΔL� is obtained from r�z �
ΔL, δ� with Eq. (4). After that, the reflectivity and reflectivity
coefficient of the third segment r�z � 2ΔL, δ� ρ�z � 2ΔL� are
calculated again using Eqs. (2) and (4). The whole process is
iterated until the ρ�z� is found for all the NBGW segments.

In the end, a mapping process is done to transform ρ�z� to
the geometry structure of each segment using the relations
between ρ�z� and effective index variations [12,13].

LA was used to reconstruct the transmission only to check
whether the calculated transmission matches our target trans-
mission in previous papers. In this paper, we show that it can
also be employed as a powerful tool for optimizing the struc-
ture. More details about LP/LA algorithms can be found in the
papers of Skaar and Feced [12,13].

B. Design Optimization Methods

From the basic LP/LA theory, many parameters, including L,
ΔL, n0, and filter structure parameters can be set by us. This
leaves us a lot of space to explore designs that satisfy our re-
quirements but that use the simplest and shortest possible
structure. However, optimizing structures requires an under-
standing of the LP/LA mechanisms.

From L � NΔL, the length scale is determined by the
number of NBGW segments N and the length of each NBGW
segment Δ. N is also the number of iterations in the LP algo-
rithm. To reduce the length scale, we want as few segments as
possible to design the filter with target transmission. Hence, the
number of iterations should be controlled, and the iteration
efficiency should be improved.

In designs, we find that the iteration efficiency is related to
the magnitude of ρ�z�, for it determines the change of the re-
flection when reconstructing the reflection. It is obvious from
Eqs. (2), (3), and (5) that when ρ�z� → 0, the grating can be
seen as a normal waveguide and r�z,δ� → r�z�ΔL,δ�ei2δΔL, which
means that the reflection changes only its phase in this segment.
From the LP algorithm, if ρ�z� � 1

M Σr�z, δ� → 0, in the next
iteration, ρ�z � ΔL� ≈ 1

M Σr�z, δ�−i2δΔL → 0. The iterations
in LP are not efficient with small ρ�z�; however, the ineffi-
cient iterations are common in structures designed by the
LP algorithm. Window functions, say, the Hanning window
function, is routinely operated upon r target to shift the original
reflected impulse in order to force the reflected impulse to be
nonzero only when t > 0. Thus, ρ�z � 0� � 1

M Σr target�δ� �
ρ�t � 0� → 0, as deduced by an inverse Fourier transform. On
the other hand, there is no backward propagation field at the
end of the filter, ρ�z � L� � 0. As a result, the reflection will
evolve slowly with slowly changing ρ at the beginning or the
end of the filter.

In order to solve the problem of inefficient iterations, we
suggest cutting the head and the tail of the filter designed by
the LP method and to keep only the central parts where ρ�z�
evolves rapidly. The reflection and transmission of the selected
parts can be calculated with the LA method to check whether
the reconstructed reflection will retain its shape with much
smaller length scale. In this way, the LA algorithm is used
not only to reconstruct and check the transmission but also
to select and optimize the useful part of the filter designed
by LP. Figure 2 shows the comparison between the transmis-
sion of 1000 segments and 100 segments after selecting the
central part. The designed transmission has a 10 nm rectangle-
shaped passband centered at λ0 � 1550 nm. After selecting the
central 100 segments only [460th to 559th segments from the
original 1000 segments in Fig. 2(b)], the target bandwidth
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(BW) and central wavelength are preserved. The transmission
of the optimized design is even smoother than the original de-
sign. Using Eq. (3), designers can flexibly adjust the design cal-
culated by the LP algorithm and optimize the filter to a
compact size for practical applications.

C. Simulation Optimization Methods

After finishing the designing process and getting the ρ�z� of
each segment, we need to find the structure that has such
ρ�z�s and simulate the transmission spectrum of our structure
to test the validity of our designs. In each NBGW segment, the
index variation is described by Eq. (1). A mapping process
needs to be performed to get the physical structure of the
CBGW for simulation and fabrication. The mapping process
is performed using the finite difference eigenmode (FDE)
solver of Lumerical Mode Solutions. Each NBGW segment
is divided into many teeth of different widths to map index
variations. It should be noted that the relationship between
the teeth width and the effective index is not linear.

There will be numerous structures to choose from in order
to approximate the sinusoidal index variations. As in the
NBGW, teeth are needed to build a CBGW. The number
of teeth we use in one period of index variation will decide
the total number of teeth utilized, which can be approximated
by the following equation:

N teeth ≈
L
Λ
� N period �

NΔL
Λ

� N period, (6)

where N period is the number of teeth we use in a period of index
variations.

The coupling coefficient of the NBGW derived from the
coupled mode theory [Eq. (1)] κ � πΔn

2λ0
is valid only in weak

Bragg gratings [27]. For high-index-contrast silicon waveguide
gratings, we need to obtain the relation between ρ�z� and teeth
corrugations or index perturbation directly from finite differ-
ence time domain (FDTD) simulations. It is known that

ρ�z� is the reflectivity of the NBGW from previous deductions.
One can simulate NBGWs with different teeth corrugations
with a fixed average effective index, get the reflectivity, and then
use methods such as interpolation to get the relation. Figure 3
gives an example when the average effective index is fixed to be
2.48. In this way, strong Bragg gratings can also be applied in
CBGW design.

After assembling the teeth, the device needs to be simulated
to predict its performance. However, direct FDTD simulation
of a long filter with an extremely large number of teeth (e.g.,
200,000 in Ref. [1]) requires prohibitive memory and time in
computing.

Using current solvers in 3D simulation software, we ex-
plored ways to reduce simulation time and memory. We arrived
at the method of simulating each NBGW segment, then
obtaining the transfer matrix of all segments, and then recon-
structing the S matrix instead of simulating the whole structure.
Given that each segment is a NBGW, a periodic structure, the
eigenmode expansion (EME) solver will be ideal to deal with
segments. The time we save depends on the number of periods
in one segment. For instance, if one uses NBGW segments that
contain 32 periods in each, then the simulation time based on
our optimization method will be at least 32 times faster than
simulating the whole structure using EME/FDTD, not to
mention the acceleration gained because of the memory we
save. Note that only one period in each segment is needed
to be stored in the memory in any procedure we use.

D. Dispersion Engineering

During the simulations, it is common to find that the simulated
transmission is far from the reconstructed transmission by the
LP algorithm. The reason is that the equations of LP/LA are
based on theoretical assumptions from previous sections. Some
assumptions/approximations may be invalid for silicon wave-
guides, which have higher index contrast and relatively large
dispersion.

First, it is easy to note that a large difference between the
group index and the effective index exists in silicon waveguides,
whereas in a fiber grating or SiN waveguide, such a dispersion
effect can be neglected by interchangeable use of ng and n0

Fig. 2. (a) Target transmission. (b) Calculated ρ (z) after the target
transmission is given. 1000 segments are used. The total length is
5 mm. (c) Calculated transmission of 1000 segments. (d) Calculated
transmission using only the central 100 segments. The optimized
length is 500 um. The selected part is from z � 2.3 mm to z �
2.8 mm in (b).

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Δn

Fig. 3. Relation between effective index perturbation and reflectiv-
ity of NBGW ρ. Each NBGW has 20 periods. The average effective
index is 2.48.
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[28,29]. For a 250 � 450 nm silicon waveguide, the group
index when λ � 1550 nm is 4.3, while the effective index is
only 2.4. If we use the original LP/LA algorithm for silicon
waveguides and introduce the difference between ng and n0,
the final spectrum will be narrower than our designed spectrum.

Second, considering the change of reflection in operation
wavelengths is essential, especially in short-period Bragg gra-
tings. In CBGW design, we hope to use short-period segments
to reduce the length scale. However, the reflection of a NBGW
is not rectangle shaped in the wavelength domain. The trans-
mission of wavelengths far from central wavelengths will match
badly with numerical calculations if the reflection variations are
not considered. Such a larger spectral range requires us to con-
sider the more complex dispersion effect—the wavelength
dependence of ρ�z�.

Here, we suggest rewriting ρ�z� as

ρ�z, λ� � ρ�z� × f �λ�
jρ�z�j , (7)

where f �λ� presents the frequency response of a NBGW. For a
grating with fixed Bragg wavelength, f �λ� is affected mainly by
wavelength detuning from the Bragg wavelength and by the
dispersion of the silicon waveguide for short-period (small ΔL)
gratings. From simulations shown in Fig. 4, both amplitude
and phase of f �λ� with certain periods are similar with different
index perturbations, and they can be introduced into the
original LP/LA algorithms. The shapes of f �λ� from sample
NBGWs with different index perturbations are shown in Fig. 4.
It can be seen that the reflectivity is declining with increasing
wavenumber detuning. This is common, for there does not ex-
ist a distinct boundary between the zero-transmission region
and the transmitted region, especially for short-period NBGW.
The slight errors caused by neglecting f �λ� will bring disastrous
results after hundreds of iterations. For example, if 100 seg-
ments are used, the error when λ � 1549 nm is 0.99100 �
0.37. Since the shapes of f �λ� are similar, we suggest using
one interpolated function to fit f �λ�, and then introducing
f �λ� to Eqs. (5) and (6). The original ρ�z� is replaced by
ρ�z, λ�. LP and LA become wavelength dependent. The design
will be better controlled in this way.

To summarize this section, our optimization is to design an
appropriate target T �λ�, and to get also the target reflection
spectrum r�0, δ� and then to calculate the ρ�z�, which deter-
mines coupling coefficients one by one using the modified LP

algorithm. After the initial structure design is done, modified
LA is used to reconstruct and check the transmission and to
select useful parts of initial structures to reduce L. After that,
we map the effective index variations to appropriate physical
structures. Finally, the physical structure is simulated in a short
time. Tradeoffs need to be made between device performances
and device length scales.

3. RESULTS AND DISCUSSION

In this section, we demonstrate that a CBGW with multiple
passbands can be designed in SOI at 1550 nm, and the band-
width of each passband can be controlled with our modifica-
tions. The NBGWs we use have a period of Λ � 312 nm, and
the central wavelength of them is controlled to be 1552.5 nm.
The thickness of the waveguide is 250 nm, and the width W of
Si in Fig. 1 is 450 nm.

As an example, we select a three-passband filter with differ-
ent bandwidths to demonstrate arbitrary control of both the
center wavelength and the bandwidth of each peak. The first
peak is λ1 � 1549 nm with 1.5 nm BW, the second is λ2 �
1552.5 nm with 1 nm BW, and the third is λ3 � 1555 nm
with 0.5 nm BW. The bandwidths of each passband and
the spacing between any two peaks are different.

For initial tests, a “long” waveguide was selected; then the
central part is selected as our final design. One thousand
NBGW segments, each 6.2 μm in length, were used in the
initial design. Once those parameters were set, ρ�z� of each
NBGW segment was calculated by the LP algorithm, After
that, the LA algorithm was used to optimize the structure
and then reconstruct the transmission. After examining the re-
constructed transmission, the central 100 segments are picked
up as our final design. The final length scale is 624 um. The
structure is designed on the SOI platform with SiO2 upper
cladding of the CBGW. The outer widths of the silicon region
(core plus grating teeth) of these 100 segments are shown in
Fig. 5. The average refractive index of each segment is fixed.

Figure 6 shows the comparison between the target transmis-
sion, the reconstructed transmission using the whole 6.2 mm
structure, and the optimized final 624 μm structure using
the LA algorithm. We can see that the basic properties of the
multi-band filter, including locations of passbands, bandwidth,

0.95

0.96

0.97

0.98

0.99

1

|f(
)|

(f
(

))

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1545 1550 1555 1560 1545 1550 1555 1560

(nm)

n=0.06
n=0.04
n=0.02

(nm)

Fig. 4. f �λ� of different NBGWs. The left is the amplitude of
f �λ�, and the right is the phase of f �λ�. Each NBGW has 20 periods.
The average effective index is 2.48. The index variations are 0.02,
0.04, and 0.06, respectively.

Fig. 5. Grating structures of the our final CBGW design. It has 100
segments. The silicon region’s outer width (core plus grating teeth) of
each segment is shown.
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and band-rejection depth, are controlled with the optimized
structure. The length scale has been shortened 10× compared
to the original design.

Figure 7 shows that the EME simulation results of the struc-
ture designed by the modified LP/LA algorithms match well
with the reconstructed spectrum calculated by the LA algo-
rithm. It can be seen that the transmission shape designed
by modified LP/LA algorithms is similar to the reconstructed
transmission spectrum. It reveals that the results attained by
solving Maxwell equations rigorously fits well with our numeri-
cal calculations using Eq. (6). We attribute the small gap be-
tween simulation results and calculation results using Eq. (6) to
the effects not considered in the transfer matrix of NBGW,
such as small errors due to approximations mentioned above
in the mapping process. Figure 8 shows the group delay of our
transmission in our final CBGW design. The phase response
can be obtained by integrating group delay.

Note that there will be some modal mismatch between
adjacent NBGW segments. The EME-based transfer matrix
method has already included the modal mismatch effect within
its computational framework. However, the original LP/LA

algorithm appears to neglect the modal mismatch, as it tends
to be small (the teeth widths are less than 4% of the wave-
guide width).

Simulation and reconstruction results of the filter designed
by original LP and LA algorithms are also shown in Fig. 7. Due
to omission of dispersion in the original LP/LA algorithm, the
reconstructed spectrum departs significantly from the simu-
lated spectrum of the structure. Furthermore, the extinction
ratios of the stopbands are poor (especially in the simulated
spectrum). It is because the reflectivity of wavelengths away
from the central wavelength is overestimated in the original
LP/LA algorithms. As a consequence, not enough light in
the stopband region is reflected in the filter. It is worth men-
tioning that low extinction ratios similar to the original LP have
been observed in single-band SOI grating waveguides [2].
Here, we show that both the locations of the bands and their
profiles in the reconstructed spectrum agree accurately with the
spectrum designed by the modified LP/LA method. Note that
today’s advanced CMOS fabrication technology is capable of
controlling line-width variation (not feature size) on the order
of >2 nm [30]. Our simulation shows that the transmission
spectral profile changes ∼1 dB over the simulated wavelength
range if those shallow grating teeth <2 nm are omitted, which
indicates our structure can be fabricated in CMOS foundries.

4. CONCLUSION

We have presented a general computer-assisted approach to the
design and optimization of complex Bragg-grating channel
waveguides.

The basic structures of the filter will be given by the LP
algorithm. Optimization of the structure can be implemented
by the LA algorithm. Success has been had here by reducing the
number of segments comprising the overall length L without
injuring the filter quality. Methods for space- and-time-efficient
simulations are also given here.

Considering the dispersion of silicon waveguides and the
frequency response of NBGWs, a dispersive form of the com-
plex reflection coefficient is introduced. The method of calcu-
lating such coefficients has been developed. Also, attention has
been paid to differentiate the phase index and group index in
various equations.

Finally, we have performed modeling and simulation of a
filter with multiple passbands. The comparison between the

Fig. 6. Comparison between target transmission (blue solid) and
reconstructed transmission of the original 6.24 mm structure (red
dashed), using LA, and the reconstructed transmission of the opti-
mized 624 um structure.

Fig. 7. Comparison between simulation result of the filter designed
by modified LP/LA (blue solid) and its reconstructed spectrum (red
solid). The simulated spectrum (blue dashed) and the reconstructed
spectrum (red dashed) of the filter designed by the original LP/LA
algorithm (blue dashed) are also shown for comparison. The horizontal
wavelength axis is given byΔλ∕Δλ0 � �λ − λ2��λ3 − λ1�. The two blue
curves are obtained by the EME simulation.

Fig. 8. Group delays of the transmission simulated by EME solver.
The horizontal wavelength axis is the same as that in Fig. 7.
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original LP/LA and the modified LP/LA shows that significant
improvement in the accuracy of the spectral profile can be ob-
tained with the modified LP/LA algorithms.

Overall, the modified LP/LA algorithms significantly reduce
the structure length and simulation time/computer memory.
Dispersion engineering improves the accuracy of designing a
spectrum profile for multi-band systems.
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